September 2025 (published: 15.09.2025)
Number 3(62)
UDC 338.27, 332.142
DOI 10.17586/2310-1172-2025-18-3-98-112
Neural network modeling of the relationship between the investment potential
of Russian regions and their ESG ranking
Reference for citation: Kirshin I.A., Koch I.A., Zakhmatov D.Yu. Neural network modeling of the relationship between the investment potential of Russian regions and their ESG ranking. Scientific journal NRU ITMO. Series «Economics and Environmental Management». 2025. № 3. Р. 98-112. DOI: 10.17586/2310-1172-2025-18-3-98-112.
Abstract. The purpose of this article is to identify, test and evaluate the impact of ESG ranking on the investment potential of Russian regions (subjects of the Russian Federation) based on neural network modeling. The sample used was data from 83 Russian regions for 2020. A cross-regional multiple regression analysis was conducted using multilayer perceptron neural network models. To identify causal relationships between the investment potential variable and three regressors: regional ESG ranking, regional investment risk and Gross Regional Product, the regression application of the STATISTICA (StatSoft) analytical software package was used. The quality and accuracy of the multilayer perceptron regression model was assessed by calculating the Mean Absolute Percentage Error. The numerical experiments showed that the neural network modeling method is available in implementation, does not require large computing power and demonstrates good accuracy. In the course of neural network modeling of nonlinear regression of investment potential of the subjects of the Russian Federation, a reliable MLP 3-4-1 model was specified with high accuracy describing and predicting the target variable - the investment potential of the region. The results obtained confirm the hypothesis put forward in the article: the investment potential of Russian regions depends to a greater extent on the ESG ranking and to a lesser extent on the investment risk of the region and the Gross Regional Product. Global sensitivity analysis showed that all constructed neural networks define the ESG variable as the most important. The proven priority of the importance of the influence of the ESG ranking on the investment potential of the region can be used by regional authorities to justify priority areas of regional policy to increase the investment attractiveness of the subjects of the Russian Federation.
Read the full article

Keywords: ESG concept, investment attractiveness of the region, neural networks; multilayer perceptron, global sensitivity analysis, STATISTICA software package.
References:
1. Belyaeva O.I. Strategicheskie prioritety gosudarstvennoi politiki v snizhenii regional'nogo neravenstva // Ekonomika i predprinimatel'stvo. 2021. № 10(135). S. 481–484. DOI 10.34925/EIP.2021.135.10.092. 2. Dvas G.V., Tsyplakova E.G., Sargsyan M.V. Investitsionnyi potentsial regiona i metody upravleniya ego formirovaniem i razvitiem // Teoriya i praktika obshchestvennogo razvitiya. 2023. № 6(182). S. 117–124. DOI 10.24158/tipor.2023.6.14. 3. Bei G. Otsenka investitsionnogo potentsiala v rossiiskikh regionakh // Pervyi ekonomicheskii zhurnal. 2024. № 9(351). S. 82–86. DOI 10.58551/20728115_2024_9_82. 4. Metodika sostavleniya reitinga investitsionnoi privlekatel'nosti regionov Rossii kompanii «RAEKS-Analitika». [Elektronnyi resurs] https://raex-rr.com/regions/investment_appeal/investment_potential_of_regions/2020/methods/ (data obrashcheniya 21.05.2025). 5. OECD (2022), 2022 Synthesis Report World Observatory on Subnational Government Finance and Investment, OECD Publishing, Paris. DOI:10.1787/b80a8cdb-en. 6. Izmailov M.K., Pupentsova S.V. ESG-transformatsiya v Rossii kak instrument strategicheskogo razvitiya // Nauchnyi zhurnal NIU ITMO. Seriya: Ekonomika i ekologicheskii menedzhment. 2024. № 4. S. 105–115. DOI 10.17586/2310-1172-2024-17-4-105-115. 7. Institutional investors and ESG worldwide – statistics & facts. [Elektronnyi resurs] https://www.statista.com/topics/13428/institutional-investors-and-esg-worldwide/#topicOverview (data obrashcheniya 14.05.2025). 8. Abhiram Dash, Debasis Bhattacharya, Digvijay Singh Dhakre, Madhuchhanda Kishan (2022) On Selection of Best Model from Spline Regression and ARIMA Models for Forecasting Rabi Food Grain Production of Odisha // Environment and Ecology. 40(3B). pr. 1428–1437. 9. Mateus B.C., Mendes M., Farinha J.T., Cardoso A.J.M., Assis R., da Costa L.M. (2023) Forecasting Steel Production in the World // Assessments Based on Shallow and Deep Neural Networks. Appl. Sci. 13, 178. DOI: 10.3390/ app13010178. 10. Zakhmatov D.Yu., Kirshin I.A., Kokh I.A. Postroenie finansovykh vremennykh ryadov s primeneniem neironnykh setei v otnoshenii prognoznykh pokazatelei predpriyatiya // KANT. 2025. № 1(54). S. 51-62. DOI: 10.24923/2222-243X.2025-54.9. 11. Investitsionnyi potentsial rossiiskikh regionov v 2020 godu. [Elektronnyi resurs] https://raex-rr.com/regions/investment_appeal/investment_potential_of_regions/2020/ (data obrashcheniya 25.05.2025). 12. ESG-reiting sub"ektov RF, 2020 god. [Elektronnyi resurs] https://raex-rr.com/ESG/ESG_regions/ESG_rating_regions/2020/ (data obrashcheniya 25.05.2025). 13. Investitsionnyi potentsial rossiiskikh regionov v 2020 godu. [Elektronnyi resurs] https://raex-rr.com/regions/investment_appeal/investment_potential_of_regions/2020/ (data obrashcheniya 25.05.2025) 14. Sotsial'no-ekonomicheskie pokazateli regionov Rossii//Rosstat; obrabotka «Esli byt' tochnym», 2023. Usloviya ispol'zovaniya: Creative Commons BY 4.0. [Elektronnyi resurs] https://tochno.st/datasets/regions_collection (data obrashcheniya 24.05.2025). 15. Witt S.F., Witt C.A. (1992) Modeling and Forecasting Demand in Tourism. London: Academic Press. 16. Box G.E.P., Jenkins G.M. and Reinsel G.C. (1994) Time Series Analysis; Forecasting and Control, 3rd ed., Prentice Hall, Englewood Cliff, New Jersey. 17. Williams P., Norris K. (2001) Near-infrared Technology: In the Agricultural and Food Industries. 2nd ed. USA: American Association of Cereal Chemists, St. Paul, Minn. 18. Cheng J.H., Sun D.W. (2015) Recent applications of spectroscopic and hyperspectral imaging techniques with chemometric analysis for rapid inspection of microbial spoilage in muscle foods // Compr Rev Food Sci F. Vol. 14. Issue 14. P. 478-490. DOI: 10.1111/1541-4337.12141 19. Yasnitskii L.N. Vvedenie v iskusstvennyi intellekt. –M.: Akademiya. 2005. 176 s.
